Photo credit: Paulo Valdivieso

What Makes Wind Energy The Fastest Growing Renewable Source of Electricity Worldwide?

Similar to hydropower, which is energy derived from water, wind energy has been utilized for thousands of years, merely with less advanced technologies than the modern inventions we have today. From the Nile River to China, the Middle East, the Americas and Europe, wind as a source of energy was seized until oil and energy prices dropped. It was not until the 1970’s oil crisis that alternative sources of energy, such as wind, started to awaken new interest worldwide. 

Today, according to Wind Energy Foundation, wind energy is the fastest growing source of electricity worldwide, and it is a fossil-free, renewable source of energy. According to the IPCC and IHA, onshore wind energy has the lowest lifecycle greenhouse gas emissions of all energy sources, with only 11 gCO2/kWh. To understand the difference, coal has 820 gCO2/kWh. In terms of climate change mitigation, it is essential to drastically reduce the amount of coal energy and seek less polluting alternatives, including wind energy. 

In 2018, 51.3 GW of new wind was installed worldwide, as stated in GWEC ́s Global Wind Report 2018. Since 2014, more than 50 GW of new wind energy has been installed per annum. Worldwide, current onshore wind power capacity with a total of 591 GW (one gigawatt equals one billion watts) covers seven per cent (7%) of total power generation capacity, while its actual total global power generation covered four per cent (4%) in 2015. The leading wind power producing country worldwide today is China with over 200 GW installed capacity, followed by the USA, Germany, India, and Brazil. The top five countries combined have a 75% share of the total worldwide wind energy market. Total installed capacity onshore by world region is largest in the Asia-Pacific, followed by Europe, the Americas, and Africa/The Middle East. Offshore capacity is currently highest in Europe. 

According to the World Energy Council, current policy plans could allow for wind power capacity to grow from roughly 487 GW in 2016 to 977 GW by 2030. In China alone, wind power could provide 26% of all electricity by 2030. With the vast majority of wind power turbines onshore, worldwide investments in the sector are booming and hit USD 109.6 billion already in 2015. In many countries today, onshore wind is the most inexpensive source of renewable energy, with costs falling rapidly and significantly. 

With a fast and credible growth track record, the wind power industry is regarded as a low-risk investment, with financial institutions increasingly much competing about the funding of wind projects. Possible risks to wind project investments include policy uncertainty and long operational lifetimes. In terms of rapidly growing power demand and distribution challenges, wind is a cost-effective option according to GWEC. The market outlook up to 2023 projects an average annual increase of 2,7 per cent in the wind energy market.  

Both IRENA, GWEC, and the World Energy Council admit that there are multiple benefits from a growing renewable energy, including wind power, sector. Not only do renewable energy sources support socio-economic growth through the generation of new jobs that accelerates economic growth, but also supports the decarbonization of the global energy sector, thus leading to less pollution and improved environmental and human well-being. Investments and growth in the renewable energy sector overall are estimated to create millions of new jobs worldwide. 

As defined by the World Energy Council and the Global Wind Energy Council, wind power is leading the energy market in its transition away from fossil fuels on both performance, reliability and costs. Despite some of its harms on the environment and ecological impacts, such as wildlife colliding with wind turbines and possible public health concerns through noise and visual impacts on people, wind power is known to be an environmentally friendly source of renewable energy, with a small land footprint, low water requirements and low greenhouse gas emissions. Denmark remains the world’s leading country in terms of integration, production, and R&D of wind energy. In 2018 alone, Danish wind turbines generated 40.7% of the Danish electricity consumption. Quite impressive, or what do you think? 

Your comments/thoughts are welcome! 

Learn more by watching U.S. Department of Energy ́s video “Energy 101: Wind Turbines”:

You may also want to read one of my previous articles: What is the Outlook for the Global Hydropower Sector?  

 

Connect with me on Twitter @annemariayritys. For climate/environment-related posts only @GCCThinkActTank. Subscribe to Yritys Executive Services to receive my latest articles, delivered personally to you.

 

 

 

Advertisement

How Safe is The Production of Nuclear Energy?

Nuclear energy is being classified as a renewable energy source which is regarded as an option to replace fossil fuels: coal, gas, and oil. According to the World Nuclear Association there are currently 450 nuclear power reactors commercially operating in 31 countries worldwide, providing an estimated 10% of our world ́s electricity. Despite being classified as a fossil-free source of energy, the World Nuclear Association states that there is a need to replace some of the oldest nuclear reactors worldwide, especially those that are coal-fired and contributing to greenhouse gas emissions by releasing carbon dioxide into Earth’s atmosphere. (World Nuclear Association 2017).

In IEA’s World Energy Outlook 2017, the International Energy Agency has a Sustainable Development Scenario for 2040 with forecasts where power generation has not been decarbonized despite the increase of low-carbon sources accounting for 40% of the total energy mix in 2040, and the worldwide usage of nuclear energy growing to 15% of the worldwide energy market. (International Energy Agency 2017). OPEC, in its World Oil Outlook 2040, estimates an annual growth rate of 2.3% for nuclear energy between 2015-2040. For more detailed information, see the table “World primary energy demand by fuel type” below.

World Primary Energy Demand by Fuel Type growth p.a. 2015-2040

With currently 12 countries getting around 25% of their electricity from nuclear power, France leads the statistics with 75% of its electricity coming from nuclear power. Beyond nuclear-friendly France, these countries are Hungary, Slovakia and Ukraine (more than 50% nuclear energy), Belgium, Bulgaria, Czech Republic, Finland, Slovenia, Sweden, and Switzerland (⅓ or more from nuclear power), Romania, Russia, Spain, UK, USA (around 20% from nuclear power), and Japan with around 25% of its electricity currently from nuclear power. Even some countries with no nuclear power plants, for instance Denmark and Italy, today depend to some extent upon nuclear energy. (World Nuclear Association 2019).

While the IEA forecasts that the share of nuclear energy on the worldwide market will grow to 15% of the total energy mix by 2040, OPEC estimates that nuclear energy will account for 6.4% of total world primary energy demand in 2040.  See table “World Primary Energy Demand by Fuel Type” below.

World Primary Energy Demand by Fuel Type OPEC

The International Atomic Energy Agency IAEA, an autonomous organization under the UN established in 1957, works towards the strengthening of nuclear security worldwide, including the prevention of nuclear weapons and supporting countries in maintaining a peaceful, safe and secure usage of nuclear technology and science. Director General of IAEA, Yukiya Amano, states that nuclear energy, as one of the lowest-carbon technologies, helps countries in reducing their greenhouse gas emissions. While at first requiring large capital investments, nuclear power plants are known to be cost efficient. Moreover, as expressed by the IAEA, the new generation of nuclear reactors are constructed with improved performance, reliability and safety.

Learn more by watching WhatTheWhy ́s video “Nuclear Energy Explained: Risk or Opportunity”:

Nuclear Energy Explained: Risk or Opportunity?

How safe are nuclear power plants and nuclear power? Despite being classified as a renewable source of energy, nuclear power plants and nuclear waste pose a number of risks both to human beings, animals and our environment. In the case of an emergency and a nuclear plant accident (see for instance Tchernobyl or Fukushima), nuclear reactors can cause chemical explosions and release dangerous radioactive material. Even when normally functioning, nuclear power plants cause radioactive waste that has to be gotten rid of in some way. The solution for this has traditionally been to bury nuclear waste in deep geological repositories. (Harvard University 2016. Reconsidering the Risks of Nuclear Power). 

While some countries (Australia, Austria, Denmark, Germany, Greece, Ireland, Italy, Latvia, Liechtenstein, Luxembourg, Malaysia, Malta, New Zealand, Norway, Philippines, Portugal, and Switzerland) have completely abandoned or are about to completely abandon nuclear power plants and the usage of nuclear power, other countries continue to rely quite heavily on nuclear energy. 

What are your thoughts about nuclear energy, the risks and safety of nuclear power (plants)? 

You may also be interested in reading one of my previous articles: What Is  The Future of The Worldwide Natural Gas Market?

Connect with me on Twitter @annemariayritys. For climate/environment-related posts only @GCCThinkActTank. Subscribe to Anne-Maria Yritys to receive my latest articles delivered personally to you.

 

 

 

GCC Think Act Tank cover 2019

What Is The Future of The Worldwide Natural Gas Market?

The natural gas industry, together with the oil industry, together account for an estimated 24% of all anthropogenic methane emissions. According to for instance the U.S. Energy Information Administration, natural gas is a fossil energy source consisting mainly of methane, which is a chemical compound with one carbon atom and four hydrogen atoms. The chemical formula for methane is CH4. 

The United States of America currently leads the production of natural gas hydrocarbons, followed by Russia, Iran, Qatar, Canada, China, The European Union, Norway, Saudi Arabia, and Turkmenistan. In World Oil Outlook 2040, OPEC estimates that the largest upcoming energy demand will come from natural gas, with an average annual growth of 0.4 % from 2015 to 2040. (Global Methane Initiative 2018; Central Intelligence Agency 2017; U.S. Energy Information Administration 2017; OPEC 2017).

In OPEC ́s forecast for the world primary energy demand by fuel type from 2015 to 2040, the demand for gas will increase by a rate of 1.8% p.a., with the majority of the increase coming from non-OECD countries and the most rapid economic growth in the developing world. OPEC projects the global economy in 2040 being 226% in comparison to 2016, with 3/4 of growth coming from developing countries. China and India alone are projected to account for almost 40% of the global GDP in 2040. (OPEC 2017. World Oil Outlook 2040).

The OPEC acknowledges the relation between population growth and energy demand, however, considering a number of variables for instance in consumer trends. It also states how energy markets are affected by government policies and recognizes the need to monitor these on a regular basis, taking into consideration for instance the Paris Agreement and the Sustainable Development Goals, with energy efficiency and clean energy now trending development. The OPEC is closely monitoring worldwide energy market and policy developments, mentioning the USA, the European Union, China, and India at the forefront.

Furthermore, OPEC estimates that total world primary energy demand by fuel type from 2015 to 2040 will see an increase of 3.6% for gas, 1,5% for nuclear energy, 0.3% for hydro energy, and 4% for other renewables, while the demand for oil would decrease by 4.2%, coal demand decreasing by 5.1%, and biomass demand decreasing by 0.1% during the time frame. The OPEC identifies energy efficiency as a critical uncertainty for the energy market with policies concentrating on reducing emissions through a number of measures related to financial and fiscal instruments. (OPEC 2017. World Oil Outlook 2040).

Estimated Global Methane Emissions 2020
Estimated Global Methane Emissions 2020

The U.S. Energy Information Administration presents natural gas as a proportionately clean burning fossil fuel, although exploration, drilling and production have direct impacts on the environment, in addition to the fact that natural gas consists mainly of methane which is a powerful greenhouse gas. Leaks from natural gas-related activities such as pipelines are causing toxic anthropogenic methane emissions. Despite the many environmental and health risks related to fossil fuels such as natural gas, the global energy market will continue to depend on these. 

The OPEC projects that oil and gas combined will supply for more than 50% of global energy needs between 2015-2040. Gas alone is estimated to have a share of 29% in OECD, 20.8% in developing countries, and 45.4% in Eurasia in 2040. In China, gas is forecast to account for 10.6% of energy demand in 2040, while coal is expected to drop down to 48.6% from 64.3% in 2015. 

The OPEC estimates that the highest growth in gas demand in the OECD region will be in OECD America, recognizing key influences related to the overall demand of natural gas and its dependency on multiple critical factors including gas supplies, competition,  regulations, and pricing.

For instance in Finland, the national Energy Authority reports that “The Finnish natural gas market has been under sector-specific regulatory supervision since the assertion of the Natural Gas Market Act in August 2000”. The natural gas market in Finland has currently no competition, with 100% of the natural gas is being imported through one pipeline from Russia and traded on the Finnish market by one single company. In Finland, the demand for natural gas has been in decline for several reasons, with natural gas accounting for six (6%) of total generation fuel mix in 2018, with the baseline for energy demand being market-based. 

In its World Gas Perspectives report (2017), the World Energy Council identifies four key findings concerning the development of the world gas market: 1) gas is expected to be the only source of fossil fuel with a growing share of the world energy market until 2050, although the long-term future for gas is insecure; 2) the global gas market will shift to Asia, with demand in Europe and North America stagnating or even decreasing; 3) by 2060, worldwide electricity demand will double, posing a possibility for the natural gas market to further grow, unless governments and regulators decide differently; 4) the natural gas sector must innovate and become a cleaner source of energy – policies and societal change will have an impact on the future of the worldwide gas market. Despite having lower emissions than both coal and oil, gas is a fossil fuel which emits greenhouse gases. 

Read one of my previous articles here: Why  Is Our World In A Freshwater Crisis?

Connect with me on Twitter @annemariayritys. For climate/environment-related posts only @GCCThinkActTank. Subscribe to Anne-Maria Yritys to receive my latest articles delivered personally to you.

 

 

 

Estimated Global Methane Emissions 2020

Why Is Coal Mining Environmentally Damaging?

Coal, which is primarily used as a liquid fuel, in cement manufacturing, steel production and electricity generation, accounts for an estimated nine per cent (9%) of total methane emissions worldwide. (Global Methane Initiative 2018; World Coal Association 2017). The top 10 coal producers worldwide account for 90% of total coal emissions: China, India, USA,  Australia, Indonesia, Russia, South Africa, Germany, Poland, and Kazakhstan. (IEA. 2017.) 

According to the International Energy Agency, total coal production declined more than ever since the IEA began its recordings in 1971, with a drop of 458 Mt down to 7.268.6 Mt in comparison to 2015, despite the fact that India, Russia, and Indonesia increased production in 2016.

The World Coal Association states that around 15 percent of all hard coal production is  destined for the international coal market, with the largest exporters being Australia, Indonesia, Russia, Colombia, South Africa, USA, Netherlands, Canada, Mongolia and Kazakhstan. China is the leading importer of coal, followed by India, Japan, Korea, Chinese Taipei, Netherlands, Germany, Turkey, Malaysia and the Russian Federation. (IEA 2017.)

Furthermore, the World Coal Association states that coal is a fossil fuel, i.e. the transformed residues of prehistoric vegetation, developed and formed throughout millions of years into energy containing coal. Greenpeace lists strip mines as the most harmful since it leaves permanent scars on the environment, including soil erosion and ruination of agricultural land, leading to the pollution of waterways when topsoil is being washed by rain, mixing up natural landscapes. 

Another environmental problem caused by coal, estimated by Greenpeace, are coal fires that can burn for decades, or even centuries, polluting our environment with chemicals and toxins that are invisible to the human eye. Greenpeace, which is campaigning to stop investments to any fossil fuel projects, has witnessed and published a case study/full report about Coal Mines Polluting South Kalimantan ́s Water. (Greenpeace, December 2014.) The report summarizes and reveals that intensive coal mining activities in this Indonesian region has led to the release of toxic pollution from coal mining into rivers while violating national standards for wastewater releases from coal mines.

While the damaging nature and risks of coal mining for the overall environment is well-known, the World Coal Association aims to develop and lead the global coal mining industry into a “pathway of zero emissions from coal” with advanced clean technologies allowing for the coal mining industry to minimize its impacts on the environment. The World Coal Association suggests that HELE power generation could reduce CO2 emissions from coal mining by more than a third. 

How about methane emissions from coal mining? The United States Environmental Protection Agency EPA estimates that methane emissions from coal mining will continue to increase and be responsible for nine per cent (9%) of total global methane emissions by 2020, whereby methane is many times more powerful as a greenhouse gas than carbon dioxide. According to various estimations, methane (CH4) is up to 25 times as powerful as a greenhouse gas in comparison with carbon dioxide (CO2). 

Are zero methane emissions from coal mining a possibility? Learn more by watching ICE-CMM Poland ́s video “Clark Talkington – Achieving nea zero methane emissions from coal mine mining”:

 

Note from author: I originally wrote and published this article on December 4th 2017 on my website annemariayritys.com and on LinkedIn as a part of my climate change research. USGS states that in addition to peat, which is a precursor to coal, the four actual types of coal are anthracite, bituminous, subbituminous, and lignite. According to Leonard, Michaelides, and Michaelides (Energy Conversion and Management Volume 164, 2018), the substitution of coal with renewables can be optimized but not fully replaced. The World Coal Association lists electricity generation, steel production, cement manufacturing and the usage of coal as a liquid fuel as the four most significant purposes of the global coal industry. Moreover, the construction industry worldwide accounts for the vast majority of the need for steel and cement, which are used as building blocks in most of construction, unless cement and steel are being replaced with other options.  

Connect with me on Twitter @annemariayritys. For climate/environment-related posts only @GCCThinkActTank. Subscribe to my newsletter at annemariayritys.com to receive my latest posts delivered directly to you. 

Anne-Maria Yritys 2019. All rights reserved.

 

 

Estimated Global Methane Emissions 2020

Why Does The Global Oil Industry Remain One of The Largest Anthropogenic Methane Emitters Worldwide?

The oil/petroleum industry, together with the gas industry, account for a significant 24% of all anthropogenic methane emissions on a global average. In the United States, for instance, natural gas and petroleum systems currently are the cause of 31% of all methane emissions, although there has been a decrease of 16% in total methane emissions in the United States between 1990 and 2015. (Global Methane Initiative 2010; Environmental Protection Agency 2015.)

OPEC, the Organization of the Petroleum Exporting Countries (Algeria, Angola, Ecuador, Equatorial Guinea, Gabon, Iran, Iraq, Kuwait, Libya, Nigeria, Qatar, Saudi Arabia, United Arab Emirates, and Venezuela), recently published World Oil Outlook 2040, a comprehensive analytical report on the current developments in the global petroleum industry and its outlooks for the upcoming two decades, up to 2040. OPEC states in World Oil Outlook 2040 the current major changes and extreme volatility within the oil industry, with OECD commercial oil inventories dropping by more than 50% within less than a year, from the beginning of 2017 up to September 2017. OPEC estimates that sustainable market stability within the industry is necessary to avoid long-term negative consequences for all stakeholders and the overall global economy.

Secretary General of OPEC, Mohammad Sanusi Barkindo, states that all 14 OPEC member countries have signed the Paris Agreement, and recognize the need for energy efficiency and the development of cleaner energy technologies. OPEC estimates global energy demand increasing by 35% from 2015 to 2040, with India and China leading the demand. Moreover, regardless of the rapid average annual growth (6.8%) of renewable energy sources (wind, photovoltaic, solar and geothermal energy), the total share of renewable energy sources is estimated to be rather low yet by 2040 on a global level. While overall global oil demand is projected to increase, oil demand in OECD countries will drop significantly. Total oil demand will slow down in the long-term with the oil industry being challenged by other sources of energy, such as renewables. OPEC also states that advancements in energy efficiency is known to have a central role in emission reduction policies, whereby government policies have a significant impact on the development of energy markets.

The OPEC member countries are identifying energy efficiency and climate change mitigation as a top priority, having signed the Paris Agreement and many of the OPEC member countries investing heavily in renewable energy sources, such as solar and wind. Despite OPEC ́s projections in its World Oil Outlook 2040 for oil accounting for more than half of total energy demand in 2040, estimating that the importance of gas and nuclear will continue to grow regardless of growth in other renewable energy sources such as solar and wind, OPEC identifies a number of uncertainties within the global energy sector, especially in regard to the worldwide oil market. These uncertainties are identified by the OPEC including: pace of technological advancements, including big data, climate change and environmental regulations, policy developments, and economic factors such as costs, fiscal conditions, and speculative financial activities.

Overall, the outlook and future of the worldwide oil industry depends largely upon governmental policies and developments within alternative energy sources, including renewables. Many countries worldwide are investing heavily in renewable energy sources, such as solar and wind energy, having ambitious targets not only to adhere to the Paris Agreement but in fact to take all necessary and possible actions to surpass the average targets of the Paris Agreement. The more efficiently countries are capable of switching over to alternative energy sources, the faster will the demand for petroleum products decreased. This allows for the oil and petroleum industry to continue developing cleaner technologies and investing in improved renewable energy technologies.

Learn more by watching Global Methane Initiative ́s video “Methane Mitigation Matters: Oil and Gas Sector”:

Connect with me on Twitter @annemariayritys. For climate/environment-related posts only @GCCThinkActTank.

Subscribe to my newsletter at https://www.annemariayritys.com to receive my latest articles/posts. 

Note from author: I originally published this analysis on my website https://www.annemariayritys.com and on LinkedIn on December 6th, 2017, as part of my research about factors causing anthropogenic climate change and to find out more about the current state and the projections of the global energy sector. My conclusions based on the sources that I used were that despite heavy investments into the renewable sector in many countries worldwide, the need for oil as a source of energy still remains due to a number of reasons, including the fact that when world population continues to grow rapidly, the need for energy increases as well, although a vast part of Sub-Saharan Africa’s population still lives fully without electricity. The expansion of renewables and the usage of traditional energy sources currently go hand in hand. Government policies have a major impact on any country’s energy market. Anne-Maria Yritys, September 2nd, 2019.  

 

Who is Responsible for The Global Climate Crisis?

What Do We Know About Global CO2 Emissions?

According to the IEA (International Energy Agency) CO2 Emissions Statistics, in 2016 TRANSPORT accounted for 1/4 of total global emissions, 71% higher in comparison with the statistics from 1990. Road transport accounted for the vast majority of the increase. Furthermore, total global CO2 emissions have more than doubled since the 1970 ́s and grown by approximately 40% since the year 2000. In 2017 alone, worldwide CO2 emissions rose by 1,5%, led by China, India, and the EU.

What conclusions can we draw from this?

  1. Increase energy efficiency and increase the usage of renewable energy sources to reduce total emissions.
  2. Reduce emission-heavy transportation.
  3. Travel less, or travel smarter.
  4. Consume more local products.
  5. Invest into close production and local businesses.
  6. Stop supporting unsustainable businesses that only care about making as much profit as possible with the lowest cost possible i.e. businesses that outsource production to low-cost markets and that try to pay as little taxes as possible (or, that outsource the business to tax havens around the world).

Anne-Maria Yritys